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The progression of an infection within a host determines the ability of a
pathogen to transmit to new hosts and to maintain itself in the population.
While the general connection between the infection dynamics within a host
and the population-level transmission dynamics of pathogens is widely
acknowledged, a comprehensive and quantitative understanding that would
allow full integration of the two scales is still lacking. Here, we provide a
brief discussion of both models and data that have attempted to provide
quantitative mappings from within-host infection dynamics to transmis-
sion fitness. We present a conceptual framework and provide examples of
studies that have taken first steps towards development of a quantitative
framework that scales from within-host infections to population-level fitness
of different pathogens. We hope to illustrate some general themes, summarize
some of the recent advances and—maybe most importantly—discuss gaps in
our ability to bridge these scales, and to stimulate future research on this
important topic.

1. Introduction

In this review, we argue that a detailed understanding of the within-host
dynamics of infectious diseases is both scientifically important and timely.
Specifically, we submit that the processes of pathogen invasion of the host, its sub-
sequent spread, interplay with host immunity and the consequent pathogenesis
impacts are central to understanding population-level transmission and mitigat-
ing the morbidity and mortality of infected hosts. To illustrate this claim, let us
consider neuraminidase inhibitors (NAI), a class of therapeutic drugs used to
treat influenza patients. While the clinical benefits of NAI in reducing the severity
of complications in infected patients remain debated [1-4], NAI are known to
shorten the symptomatic period and reduce virus load [5]. This, in turn, can
potentially lead to reduced transmission of those treated with NAI, and therefore,
make NAI a potentially important tool in outbreak mitigation or the curtailment
of localized transmission [6—10]. However, even though we appreciate the need
for quantifying the epidemiological impacts of NAI, obtaining suitable popu-
lation-level information to do so remains difficult [11-15]. If instead there is a
general theory on scaling from individual-level measurements of virus load
and symptom severity to between-host transmission fitness, we could use more
readily available within-host data to make quantitative predictions about the
impact of NAI on outbreak mitigation.

Another example illustrating the importance of knowing quantitatively the
link between within-host infection dynamics and transmission fitness comes
from a recent study on avian influenza persistence [16]. Aiming to dissect the
fitness consequences of differential sensitivity of virus subtypes to temperature,
we considered three distinct ways in which transmission fitness might be linked
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Figure 1. Schematic of the within-host infection and between host-transmission link. Inside an infected host, pathogen and immune response interact. These
interactions dictate time-varying pathogen load, immune response and symptoms. Pathogen, immune response and symptoms impact (i) host infectiousness
and (i) host behaviour relating to pathogen spread. These components in turn influence pathogen transmission potential. (Online version in colour.)

to viral load. We found that the predicted population-level
fitness of different low-pathogenic avian influenza strains
strongly depended on the specific assumed link between
viral load and transmission potential. In the absence of
additional information on transmission and viral shedding,
we were unable to make more precise predictions.

These are just two examples pointing to the importance
of developing a framework that bridges within-host and
between-host levels in a quantitative and predictive manner.
Increasing awareness of the importance to integrate within-
and between-host scales has led to the development of
models that explicitly link the two scales [7,17-21]. These
models, often referred to as ‘multi-scale’ models, have increased
in popularity in recent years [22-26]. While there have been
exciting advances made in this area, most studies linking
within- and between-host scales are conceptual or theoretical
with mainly qualitative and little quantitative support from
data. Progress towards a predictive multi-scale framework
will require a more precise, quantitative understanding of how
infection dynamics, pathogen load, target cell depletion, immu-
nology, symptomatology and other clinical features combine to
shape pathogen transmission fitness at the population level.

In the following, we discuss some of the quantitative links
that have been or need to be made in bridging the scales. To
guide our discussion, we introduce a conceptual model,
shown in figure 1. The main protagonists in any infection are
the pathogenic organism and the immune response, which
vary dynamically over the course of an infection. The interplay
between these determines the time course of pathogen abun-
dance in the host (pathogen load), and host symptoms,
which in turn can interact with pathogen and immune
response. Pathogen load, immune response and symptoms dic-
tate (i) the host infectiousness profile and (ii) host behaviour as
it relates to pathogen spread. In the following sections, we pro-
vide a collection of case studies that highlight some of the steps
that have recently been made with regard to the quantitative
bridging of individual host infection dynamics (pathogen,
immune response and symptoms) to (i) host infectiousness
and (ii) host behaviour and further on to transmission fitness.

2. Host infectiousness

To ensure non-extinction in a host population, a pathogen
needs to replicate to levels within an infected host that
are sufficient to generate ongoing chains of transmission to
new hosts. It makes intuitive sense to assume that—all else
being equal—the transmission potential of an infectious host

increases with increasing pathogen load in the appropriate
host tissues. For instance, high pathogen load in the respiratory
tract may be expected to correspond to high infectiousness for a
respiratory pathogen.

This—arguably simplest—assumption that transmission
potential only depends on pathogen load has been used in a
number of recent influenza modelling studies. However, the
assumed functional association between viral load and trans-
mission varied considerably. Some studies have considered
transmission to be linked to the instantaneous viral load
[27,28], whereas others have instead explored the total area
under the curve (AUC) [29-31]. Among those models assuming
transmission to scale with total virus load (AUC), alternative
assumptions include transmission scaling with viral load on a
logarithmic scale [16,32] or through a linear relationship [16].

For other infectious diseases, similar assumptions have
been incorporated in mathematical models. For instance,
studies of HIV and hepatitis C virus (HCV) assumed that
virus load and possibly the number of infected cells are posi-
tively associated with transmission fitness [33—35]. In another
model for HCV, it was assumed transmission fitness is pro-
portional to the logarithm of the infected cell density [36]
(as a proxy of virus load). Similar assumptions of the relation
between virus load and transmission fitness have been made
for generic, conceptual infection models [37-40].

While these models make plausible, pragmatic assumptions
about the link between pathogen load and transmission rate,
direct empirical support is not widely available. Possibly,
one of the best studied pathogens in this regard is HIV. Data
for HIV correlating the viral load in serum with probabi-
lity of infection in a partner suggest a sigmoid relationship
(figure 2; [42-44]). However, higher viral load also leads to
more rapid progression to the terminal AIDS stage [43,45], there-
fore reducing the time during which transmission can occur
(figure 2). The impact of increasing virus load on both increased
instantaneous infectiousness and faster progression towards
AIDS lead to the suggestion that overall lifetime transmission
potential is maximized at intermediate viral loads [41,43].

Figure 3 provides another example of a direct mapping
from within-human pathogen load data to transmission for
dengue infections. For each of the four dengue serotypes, the
association between viraemia in dengue patients and the infec-
tiousness of these patients to mosquitoes is shown (figure 3;
[46]). In acute infections, such as dengue, pathogen levels do
not reach a defined steady state at which pathogen levels are
more or less constant for an extended period. Instead, the
whole pathogen time-course during the infection likely deter-
mines overall transmission potential. It is likely that acute
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Figure 2. HIV transmission between discordant couples (blue) and duration of asymptomatic period (green) as function of set-point virus load for HIV. Reproduced
from Fraser et al. [41]; see this study and references therein for more details. Reprinted with permission from AAAS. (Online version in colour.)
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Figure 3. Probability of a mosquito getting infected with dengue virus when exposed to an infected human, as a function of dengue virus load in the blood. Data
are indicated by the symbols, lines show model fits. The figure is shown as originally published in Nguyen et al. [46]. See the original publication for more detailed
descriptions and meaning of all features shown in the figure. (Online version in colour.)

infections show a negative correlation between, for instance,
peak pathogen load and the duration of infection. This can
happen either because a higher peak leads to more rapid host
death or a stronger ensuing immune response clears the infec-
tion more quickly. In figure 4, we present the duration of
infection as a function of pathogen peak for several acute
viral infections in animal hosts. In four of the five viruses, we
observe a negative correlation between virus peak load and

infection duration, with influenza A the exception. In general,
such patterns will likely vary depending on the details of
inoculum dose, host species, virus strain, etc. It will be impor-
tant to determine how different components of infection
dynamics such as duration, peak load, total area under the
curve, etc., determine overall transmission potential. As far as
we are aware, this has not yet been determined for dengue or
any other acute human infection.
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Figure 4. Duration of infection as function of pathogen peak load for several
acute viral infections. Symbols show data, lines are linear fits to indicate
trend. The infections shown are adenovirus (ADV) in cotton rats [47],
human parainfluenza virus (HPIV) in cotton rats [48], influenza A virus
(IAV) in mice [49], infectious bronchitis virus (IBV) in chickens [50] and
murine norovirus (MNV) in mice [51]. Duration of infection is defined as
the time at which the pathogen load drops below some threshold, e.g.
the limit of detection or 1 infectious particle. See the original studies and
also Li & Handel [52] for more details. (Online version in colour.)

The relationship between pathogen load and infectivity
presented in figures 2 and 3 has also been reported in other
infectious disease systems. For instance, transmission of malaria
from humans to mosquitoes was found to map onto pathogen
load similar to the mappings shown for dengue [53,54]. Similar
patterns were found in feeding experiments measuring infec-
tion of sand flies with Leishmania donovani and mosquitoes
with chikungunya [55-57], vertical transmission of hepatitis B
virus between mothers and infants [58] and human T lympho-
tropic virus transmission between males and females [59] and
mothers and newborns through breastfeeding [60]. Several
studies of transmission in animal hosts have also shown a scal-
ing of transmission fitness with pathogen load, e.g. Salmonella
and Clostridium difficile transmission in mice [61,62] and
Escherichia coli in cattle [63]. All these examples suggest that
for some diseases and under some scenarios, infectiousness
might be directly determined by pathogen load. The simple
view that the infectiousness of an individual is dictated by
pathogen load is appealing inasmuch that pathogen load is
often relatively easily measurable. Under such conditions, the
impact of symptoms on infectiousness may be safely ignored.
If one further assumes that the contact behaviour of a host is
not affected by pathogen load or associated symptoms, one
obtains the simplest possible mapping from within-host
dynamics to transmission, with host infectiousness and trans-
mission potential related according to some functional form
to pathogen load alone.

Often, however, host symptoms play a central role in effi-
cient transmission. For instance, while one might expect that
for HIV, symptoms in the infected person are not required for
efficient transmission, there is some evidence that symptoms
such as ulcers and other tissue injuries increase infectiousness
of HIV-infected host [64], and that the stage of the infection,
and likely changes in the status of the immune response
during these different stages, also seem to have some impact
on transmission [65]. Prominent pathogens which appear
only to transmit during the symptomatic phase include SARS
and Ebola [66,67]—though it is not fully clear if the symptoms
are strictly required for transmission or merely coincide with
virus load levels that are sufficient for transmission. For respir-
atory pathogens, symptoms that can facilitate transmission
involve coughing and sneezing, for gastrointestinal pathogens
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Figure 5. Nasal discharge as a function of viral load. Data are from Hayden
et al. [71] (squares) and Fritz et al. [72] (circles) and measure viral load as
determined by nasal wash, as well as total nasal discharge (i.e. snot) for 24 h
time periods, produced by and collected from volunteers infected with influ-
enza. Also shown is the best fit for a sigmoid function. Reproduced from
Handel et al. [70], see the original publication for more details. (Online
version in colour.)

the symptoms are often vomiting and diarrhoea, which have
been shown to affect transmission [68,69].

One way to allow for the role of symptoms on transmis-
sion but still keep the focus on pathogen load is to try and
express symptoms as a function of pathogen load. In a previous
study, we assumed that host infectiousness was proportional to
virus concentration multiplied by total amount of shedding
[70]. Shedding, while presumably influenced by symptoms,
was mapped back onto virus load. A sigmoid relation between
virus load and shedding as measured by nasal discharge
provided a reasonable fit (figure 5). This approach thereby
accounted for the contribution of symptoms to shedding, but
through mapping of symptoms back to virus load expressed
infectiousness as function of pathogen load alone.

While pathogen load and symptoms are closely correlated
(see e.g. [73-75] for influenza), the ability to map symptoms
back onto pathogen load will likely not work in general.
Returning to influenza as our example, analyses of data from
ferret infection studies showed that different influenza strains
can generate similar viral loads but contrasting transmission
potential [76,77]. Because the ferrets, in this study, were
housed in cages with presumably little change in contact
behaviour between different study groups, differences in trans-
mission are not attributable to differences in host contact
behaviour or viral load, but instead must be attributed to
other features, such as qualitative differences in the virus [78]
or differences in host infectiousness mediated by symptoms
(e.g. frequency of sneezing). How best to associate symptoms
to transmission potential remains an open question. For
instance, while sneezing likely helps transmission in both
humans and ferrets, there does not seem an easy and general
relation between the two, with different mechanisms of
transmission all contributing [79-82].

If it is not possible to map symptoms directly to pathogen
load, one needs to specify a mapping between both symptoms
and pathogen load (which both in turn are influenced by the
immune response) and host infectiousness. This idea has
been included in several influenza multi-scale modelling
studies, which assumed that transmission/infectiousness was
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a product of virus load (not further defined) and a sigmoid
function of interferon levels [83]. The latter was assumed to
represent symptoms. A more recent modelling study assumed
that transmission scaled with both virus load and patho-
genicity by connecting these quantities through different
(non-specified) linear and nonlinear functions [84].

Unfortunately, data that would allow a more detailed
translation of pathogen load, immune response and symptoms
into infectiousness is lacking for most pathogens. We could not
find any data for a human pathogen that would allow such a
direct, quantitative mapping. One detailed study that seems
to be the most advanced effort in that direction was done for
foot-and-mouth disease virus infection in cattle [85]. By care-
fully measuring multiple pathogen, immune response and
symptom variables of infected animals over the course of the
infection, and further exposing uninfected animals at different
times during the infection and recording if transmission
occurred, it was possible to devise a model that mapped
within-host infection quantities to transmission potential. This
study showed that, in addition to virus load, factors such as
lesions, temperature and interferon, among others, impacted
transmission potential [85,86]. More studies of this nature are
needed, and we return to that point in the discussion.

To summarize this section, we conclude that while the
simple assumption that infectiousness depends solely on patho-
gen load might be intuitively appealing and justifiable in some
cases, in many situations, pathogen load alone is likely to be
a poor predictor of infectiousness. The effect of symptoms
will need to be included to properly characterize infectiousness.
A major obstacle in taking this step for any pathogen remains
the absence of suitable data that would permit the development
of a more comprehensive, quantitative understanding. Even
when one might reasonably assume that symptoms can be
ignored, empirically supported explicit functional relationships
between pathogen load and host infectiousness are still not
available for many important pathogens. A major future chal-
lenge remains the determination of whether pathogen load
alone is sufficiently predictive of instantaneous infectious-
ness. If yes, one needs to determine which organs are the
most useful sampling sites that predict infectiousness, and
then try to determine a quantitative mapping between patho-
gen load and infectiousness (e.g. linear or log scale, sigmoid
or other). If pathogen load alone does not prove to be a good
predictor of infectiousness, it would be important to identify
those symptoms that influence infectiousness. One then either
needs to measure those symptoms directly, or if possible,
determine a mapping between pathogen load, appropriate
components of the immune response, and symptoms, and
measure those latter quantities. For instance, if one were to
determine that sneezing is an important component of infec-
tiousness for influenza, one could either directly measure
sneezing frequency [80] or determine immune response
correlates (e.g. histamine levels) and measure these.

3. Host behaviour

The behaviour of an infected host as it relates to the potential
of transmission is the second component after infectiousness
that determines overall transmission potential. Host behav-
iour is often influenced by symptoms, which in turn are
determined by pathogen and immune response dynamics.
(We do not further discuss behaviour changes specific to

humans that are not related to the biology of the infection [ 5 |

process, e.g. use of condoms by HIV-infected individuals
and similar actions.)

The simplest assumption is that host behaviour is indepen-
dent of the within-host infection process. This might often be a
reasonable approximation for diseases that cause few or mild
symptoms. Many sexually transmitted diseases might fall
into this category for the majority of infected hosts, as might
be mild infections with pathogens such as rhinovirus. If instead
a pathogen causes significant symptoms, it often affects trans-
mission potential in a complicated way. As discussed above,
symptoms are often beneficial to the pathogen if they tend
to increase infectiousness. However, beyond a certain point,
there is likely a trade-off between enhanced infectiousness
and reductions in host behaviour that can lead to transmission.
The general analysis of such trade-offs has been under heavy
theoretical development over the past few decades, commonly
known as “virulence research’. We refer interested readers to
reviews on this topic [87,88] and references therein for further
details on this important topic. While the theory for such
trade-offs is pretty well studied, the evidence from data is
limited, especially for human pathogens.

Some data supporting the idea that changes in host be-
haviour limit the transmission potential for some diseases
comes from a line of investigation by Ewald and co-workers
[89-92]. Those studies showed that pathogens which do not
rely strongly on host health and mobility tend to induce more
severe symptoms (i.e. are more virulent) compared with
pathogens that need the host to be reasonably healthy and
mobile to support further spread.

Unfortunately, the existing evidence mostly comes from
population-level analyses of aggregated data. Studies that try
to quantify the relation between host infection and behaviour
in individual hosts are much less common. Some examples
come from animal infections, where some pathogens have
been shown to actively manipulate host behaviour. For
instance, toxoplasma is known to alter the behaviour of its
rodent host, presumably to increase contact with the next
host stage, the feline host [93]. Similar host altering behaviour
to benefit the pathogen have been described for other patho-
gens [94]. While it is acknowledged that disease status can
alter behaviour in humans as well (e.g. [95] and references
therein), studies allowing quantification of the impact of infec-
tion on behaviour for human infections are rare. For the human
infection examples presented in §2, the data were collected in
experimental settings with little opportunity to observe and
measure altered host behaviour. For instance, for the dengue
data, the experimental set-up for measuring human infecti-
vity to biting mosquitoes eliminated any impact of potential
symptom-mediated behaviour change. In a less controlled
experimental setting, such behaviour changes might impact
overall transmission potential.

A study that provides some information on the link between
infection status and host behaviour was done for influenza
during the 2009 pandemic using a survey-based recording
method [96,97]. Results showed that sick individuals had
around one-fourth the number of daily contacts compared
with healthy individuals, leading to an estimated reduction of
transmission (as measured by the reproductive number)
of the same amount [96,97]. This study also suggested that
the number of symptoms correlated inversely with the
number of contacts [96], possibly, because increased symptoms
might make it more likely that an individual stays at home
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(self-quarantines). The latter finding supports the assumption of
a previous modelling study [70]. In that study, we made the
ad hoc assumption that there is an inverse correlation between
contact rate, w, and symptoms, S, according tow ~ 1/(1 + S).

Clearly, more detailed data would be useful to better
parametrize and define the relation between symptoms and
contact behaviour, not only for influenza but also for most
other diseases. Based on the contact studies for influenza, it
seems possible that the right kind of data linking symptoms
with contact behaviour and therefore transmission potential
could be obtained for a number of infectious diseases.

The findings on contact patterns shown in Eames et al. and
Kerckhove et al. [96,97], combined with studies showing that
prolonged viral shedding correlated with more severe disease
[98,99], also suggest that a virulence—transmission trade-off
exists for influenza, akin to the one for HIV mentioned above.
Additional data would be needed to confirm and further
quantify this potential trade-off.

Finally, while we have focused on potential contact behav-
iour changes in the infected host, it is worth pointing out that
behaviour changes might also occur among susceptible hosts,
who adjust their behaviour based on the perceived sickness of
the host. For instance, if someone sneezes or coughs repeatedly,
others might keep an increased distance. This symptom-
induced behaviour change could also reduce transmission
potential. For further discussions of this component, as well as
more general discussions about the role of behaviour on the
spread of infectious diseases, we refer the reader to Funk ef al.
and Manfredi & D’Onofrio [100-102] and references therein.

To summarize this section, we conclude that the impact
of pathogen load, immune response and symptoms on host
contact behaviour, and its subsequent impact on transmission,
seems to be the least well studied part of the components link-
ing the within-host and between-host scales and requires
urgent future attention. Especially needed are data from
either experimental or observational settings that could allow
one to determine the mapping from infection dynamics to
host contact behaviour and transmission potential.

4. Discussion

It is widely acknowledged that there is heterogeneity in the
transmission potential of infected hosts [103—-105]. Understand-
ing how within-host factors of an infected individual contribute
to transmission is important in targeting intervention strategies
at high transmission hosts [106]. If, for some pathogen,
increased transmission is mainly a function of host behaviour,
a different strategy is called for compared with a situation
where increased transmission is mainly associated with specific
types of symptoms or high pathogen load. Beyond intervention
strategies, linking the within-host and between-host scales will
be important in obtaining a more complete and predictive
understanding of host—pathogen ecology and evolution.

The past few decades have seen important advances in
this regard. However, most of these advances have been
theoretical, the much-needed comparison of the theory with
data is often missing. Here, we sketched out some of the com-
ponents linking the within-host and between-host scales, and
provided some empirical examples that have demonstrated
different aspects of how these scales could be bridged. It is
obvious to us that this endeavour is still in its infancy. Even
for the better studied of the components outlined above,

measure pathogen load, symptoms,
immune response, behaviour...

contact
animals

Figure 6. Experimental set-up to determine infectiousness as function of
within-host infection dynamics. The infected host is repeatedly sampled to
determine as many infection-related quantities as possible (e.g. pathogen
load, various immune response components, symptoms). In addition, sets
of susceptible hosts are exposed to the infected host at various intervals
to determine transmission. This could allow one to obtain a quantitative
mapping between quantities such as pathogen load and symptoms and
transmission potential [85]. It might even be possible to set up the exper-
iment in such a way that potential contact behaviour changes in the infected
host or the contacts can be measured. (Online version in colour.)

namely host infectiousness, we appear to be in the early
phase of a quantitative link. Less is known about the host
behaviour component, especially for human pathogens.

While further theoretical advances are useful and necessary,
the most beneficial studies are likely those that provide a tight
integration of models with data. For instance, to estimate
in detail the relation between infectiousness and within-host
infection dynamics, one could perform experiments similar
to the one described previously by Charleston et al. [85]. In
figure 6, we show an experimental set-up that would allow
one to determine the relation between pathogen load,
immune response, symptoms and how it relates to transmission
potential. By frequently measuring as many infection-related
quantities as possible (e.g. pathogen load, various immune
response components, symptoms) in the infected host, and
further at frequent intervals exposing a number of naive hosts
to the infected hosts and measuring transmission, one could
obtain a detailed understanding how different within-host
components affect transmission.

While conceptually fairly straightforward, there are sig-
nificant logistic challenges owing to the potentially frequent
replacement of contacts. While the general feasibility of trans-
mission experiments have for instance been demonstrated for
influenza between humans [107], it would require a large
number of human volunteers to enable frequent replacement
of contacts. The same holds true for animal experiments. This
might only be feasible for certain pathogen—host combi-
nations. We expect small mammals (e.g. ferrets [108]) and
birds (e.g. chicken [109]) to be potentially suitable hosts.
Given the likely expense of such studies, it is important to
design them in the most efficient way possible. For instance,
the experimental set-up should be chosen such that there is
variation in the number of contact hosts that get infected. If
either all or none get infected every time, little information
is gained. Further, the optimal frequency of contact animal
replacement needs to be determined. Theoretical models
have been devised to help plan small-scale transmission
experiments [110-112]. These theoretical developments
focused on experiments with the usual set-up where infec-
ted and contact animals were brought into contact for the
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duration of the infection to assess overall transmission poten-
tial, i.e. the estimation of a quantity such as Ry. Similar
methods could be devised for scenarios that require frequent
adding and removal of contact animals. It would be impor-
tant to estimate the optimal number of ‘rotations’, the
number of contact animals and infected animals per rotation,
and the number of required replicates.

The collection of data allowing one to better estimate the
second component of transmission potential, namely host
behaviour, seems harder. Experimental studies often do not
allow hosts to alter their behaviour in a meaningful way,
because the enclosures in which animals (or humans) are kept
during such experiments are very circumscribed. It might be
possible for some hosts, e.g. chickens, to use large enough
enclosures to potentially see changes in behaviour related to
the infection. It is more likely that such data can come from care-
ful observational studies. This is especially true for human
pathogens. Setting up such studies and analysing the data in
a way that will allow one to draw quantitative conclusions is
likely a formidable challenge.

To further add to the task ahead of us, we point out that
our ‘general’ conceptual overview provided here is still not
very general. We have focused only on the question of scaling
from within-host to between-host levels from a single patho-
gen genotype point of view, without considering changes in
genotype, i.e. we did not consider explicitly evolutionary pro-
cesses. This ignores the possibility of competitive dynamics
between genotypes, which can be especially important for
pathogens with high mutation rates and those that lead to
long-term infection. The question of genetic and antigenic
diversity, evolution and its relation to transmission has
been addressed theoretically [36,44], but again experimental
information is sparse [113]. The multi-genotype view also
encompasses competition between unrelated pathogens, an
area that has been explored somewhat in models [114] but
for which data will be even harder to obtain.

We have also not discussed how to include a distinct

transmission stage in the process of scaling from individual
infection to population-level transmission. For some patho-
gens, e.g. HIV, the transmission between hosts is essentially
direct, and therefore, one does not need to consider a distinct
transmission stage. For other pathogens, such as influenza or
cholera, an environmental stage may be important [115-117].
If there is no trade-off between infection dynamics within a
host and survival in the environment, the pathogen can
optimize both stages [32]. However, it is quite likely that
trade-offs between within-host infection dynamics and
environmental stage occur at least for some pathogens or in
certain situations [92], though again, there is a general lack
of experimental data on that topic. One notable exception is
a study on environmental survival and growth in phages,
where a trade-off between the environmental persistence
with replication efficiency in the bacterial host was demon-
strated [118]. If such trade-offs occur, the ability to persist
versus replicate inside the host affects the overall fitness [119].
In sum, we are still in the early stages of what should be an
extremely interesting and fruitful endeavour, building a theor-
etical framework that bridges within- and between-host scales
and is thoroughly grounded in data. To do so, both future
model development and collection of additional data, most
usefully done in an integrated fashion, will be necessary.
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