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a b s t r a c t

Antiviral drugs, most notably the neuraminidase inhibitors, are an important component of control

strategies aimed to prevent or limit any future influenza pandemic. The potential large-scale use of

antiviral drugs brings with it the danger of drug resistance evolution. A number of recent studies have

shown that the emergence of drug-resistant influenza could undermine the usefulness of antiviral drugs

for the control of an epidemic or pandemic outbreak. While these studies have provided important

insights, the inherently stochastic nature of resistance generation and spread, as well as the potential for

ongoing evolution of the resistant strain have not been fully addressed. Here, we study a stochastic

model of drug resistance emergence and consecutive evolution of the resistant strain in response to

antiviral control during an influenza pandemic. We find that taking into consideration the ongoing

evolution of the resistant strain does not increase the probability of resistance emergence; however, it

increases the total number of infecteds if a resistant outbreak occurs. Our study further shows that

taking stochasticity into account leads to results that can differ from deterministic models. Specifically,

we find that rapid and strong control cannot only contain a drug sensitive outbreak, it can also prevent a

resistant outbreak from occurring. We find that the best control strategy is early intervention heavily

based on prophylaxis at a level that leads to outbreak containment. If containment is not possible,

mitigation works best at intermediate levels of antiviral control. Finally, we show that the results are not

very sensitive to the way resistance generation is modeled.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

It is almost certain that sooner or later, a new influenza A virus
will emerge against which humans have little or no immunity and
that is able to spread through human populations and potentially
cause a pandemic (Webster, 2002; Cox and Subbarao, 2000). In
the face of this threat, researchers have been studying control
strategies that might prevent or mitigate such a pandemic
(Longini et al., 2005; Ferguson et al., 2005, 2006; Longini et al.,
2004; Germann et al., 2006; Duerr et al., 2007). Most proposed
intervention strategies rely to some extent on the use of antivirals,
most notably the neuraminidase inhibitors (Gani et al., 2005;
Moscona, 2005). Unfortunately, the strong selection pressure
exerted by the extensive use of drugs often leads to the evolution
of drug resistance (Livermore, 2005; Levy and Marshall, 2004;
ll rights reserved.
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Dancer, 2004). Most situations encountered so far in the realm of
antibiotic resistance involve time-scales on the order of years
before a large fraction of hosts harbors a resistant strain
(Livermore, 2005; Lipsitch, 2001). However, the high mutation
rate of viruses can lead to a much more rapid evolution of
resistance. One premier example is the evolution of resistance
that occurs in HIV during treatment with a single drug (Clavel and
Hance, 2004). Since influenza is also a relatively fast evolving
virus with a high mutation rate (Parvin et al., 1986; Nobusawa and
Sato, 2006), it is possible that drug resistance can become a
problem during the course of a single pandemic outbreak.

A number of modeling studies investigated the possible impact
of resistance emergence and spread during an influenza outbreak
(Stilianakis et al., 1998; Ferguson et al., 2003; Regoes and
Bonhoeffer, 2006; Lipsitch et al., 2007; Alexander et al., 2007;
Debarre et al., 2007; Xu et al., 2007; Moghadas et al., 2008). While
these studies have provided important insights, a few aspects
remain to be fully addressed. Most importantly, the majority of
studies are based on deterministic models. This ignores the
stochastic nature of the rare events that lead to initial resistance
generation and spread. while a few recent studies were based on
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Table 1
Possible transitions and their propensities (the propensity multiplied with the

time step gives the probability that a given event occurs)

Transitions Propensity

S! S� 1, Iu ! Iu þ 1 ð1� f pÞð1� f tÞðbuð1� cuÞIu þ btð1� ctÞItÞS

S! S� 1, It ! It þ 1 ðf pð1� epÞ þ ð1� f pÞf tÞðbuð1� cuÞIu þ btð1� ctÞIt ÞS

S! S� 1, I1 ! I1 þ 1 ðbucuIu þ btct ItÞSþ b1ð1� c1ÞI1S

S! S� 1, I2 ! I2 þ 1 b1c1I1Sþ b2ð1� c2ÞI2S

S! S� 1, I3 ! I3 þ 1 b2c2I2Sþ b3I3S

Iu ! Iu � 1 nuIu

It ! It � 1 nt It

I1 ! I1 � 1 n1I1

I2 ! I2 � 1 n2I2

I3 ! I3 � 1 n3I3
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stochastic models (Debarre et al., 2007; Xu et al., 2007), these
studies only considered outbreaks in small populations (less than
103

2104 individuals). Further, these studies did not consider
continued evolution of the resistant strain. While resistance
usually carries a fitness cost, the resistant mutants can undergo
further evolution, acquiring so called compensatory mutations
that restore their fitness while retaining the resistant phenotype
(Andersson and Levin, 1999; Maisnier-Patin and Andersson, 2004).
The result can be a strain that is at the same time drug resistant
and has a fitness close to—and in the worst case even higher
than—the original drug-sensitive strain. Limited in vitro evidence
suggests that compensatory mutations might occur for neurami-
nidase inhibitor resistant influenza (Yen et al., 2006). Only one
study considered compensatory mutations for influenza drug
resistance (Moghadas et al., 2008). However, this study is based
on a deterministic framework, and due to the rarity of these
compensatory mutation events, a stochastic framework is more
appropriate (Handel et al., 2006).

Here, we study a stochastic model of neuraminidase inhibitor
resistance emergence and consecutive evolution of the resistant
strain in response to antiviral control during an influenza
pandemic in a large population. Our study shows that taking
stochasticity into account leads to results that can differ from
deterministic models. Specifically, we find that rapid and strong
control can contain not only a drug sensitive outbreak but also
prevent a resistant outbreak from occurring. We find that the best
control strategy to prevent resistance emergence and reduce the
total number of infecteds is early intervention heavily based on
prophylaxis at a level that leads to outbreak containment. If
containment is not possible, mitigation works best at intermedi-
ate levels of control. Taking into consideration the ongoing
evolution of the resistant strain does not increase the probability
of resistance emergence, however it increases the total number of
infecteds if a large resistant outbreak occurs. We also show that
the results are largely insensitive with respect to the detailed
implementation of the resistance generation process.
Fig. 1. Schematic of the compartmental model describing the infection dynamics. The co

are untreated, Iu , persons infected with the drug sensitive strain that receive treatment,

The first resistant strain is the one initially generated, ongoing evolution leads to fu

subsequently in I3. Table 1 show the possible transitions and their propensities, Table
2. The model

We model the outbreak using a stochastic, compartmental,
SIR-type model. A schematic flow diagram of the model is shown
in Fig. 1, Table 1 gives the transitions and their propensities which
fully specify the model, while Table 2 summarizes the variables
and parameters of the system.

We consider a pandemic outbreak in the United States. We
assume that for a novel, pandemic strain, no immunity exists, the
whole population is susceptible (S). Susceptible hosts receive
prophylaxis with a uniform probability, or phrased differently, a
fraction f p of susceptible hosts receive prophylaxis, which has an
efficacy of ep. If prophylaxis fails, hosts become infected. We
assume that all infected persons will become ill and show
symptoms, we ignore the possibility of asymptomatic infections.
Infecteds are divided into five different compartments. A fraction
f t of hosts infected with the drug sensitive strain receive antiviral
treatment (It), while the remainder of the hosts infected with the
sensitive strain do not (Iu). Following Lipsitch et al. (2007), we
assume that failed prophylaxis leads to a course of infection
mpartments are susceptibles, S, persons infected with the drug sensitive strain that

It , and persons infected with the first, second and third resistant strain, I1, I2 and I3.

rther mutations that increase fitness of the resistant strain, resulting in I2 and

2 summarizes the model parameters. Further details are given in the text.
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Table 2
Model parameters

Symbol Meaning Values Comment

f p Fraction of uninfecteds receiving prophylaxis 021 Varied

f t Fraction of infecteds receiving treatment 021 Varied

ep Efficacy of prophylaxis 0.8 Based on AVES in Yang et al. (2006), AVESd in Halloran et al.

(2007)

nu Clearance rate (1/mean duration of infection) of untreated

infected hosts
1=4:8d�1 Based on Carrat et al. (2008)

nt Clearance rate of treated infected hosts 1=3:4d�1 Reduction of infectious period by � 30%, based on Treanor et al.

(2000) and Whitley et al. (2001)

n1, n2, n3 Clearance rate of resistant infected hosts 1=4:8d�1 Assumption that resistant strain leads to same duration of

infection as sensitive strain

ct Probability of resistance generation for treated hosts 10�3 Based on Fig. 4A in Handel et al. (2007b), assuming treatment at

day one for the more realistic (IR) model

cu Probability of resistance generation for untreated hosts 10�5 Similar to value for ineffective (late) treatment in Handel et al.

(2007b, Fig. 4A), IR model

c1, c2 Probability of resistance generation of compensatory

mutants
10�3 See text

Ru Reproductive number of susceptible strain (in the absence of

treatment)

2:0 Viboud et al. (2006) and Wallinga and Lipsitch (2007)

Rt Reproductive number of susceptible strain (in the presence of

treatment)

0:68 Based on Yang et al. (2006)

R1, R2, R3 Reproductive numbers of resistant strains 1:5, 1:75, 2:0 Assumed

bu , bt b1, b2, b3 Transmission parameters Calculated as Rini=N0

N0 Population size 3� 108 US population

Values are specific for neuraminidase inhibitor treatment and resistance emergence in influenza A.
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comparable to a treated host. Additionally, three compartments
for resistant mutants are considered, (I1, I2 and I3). We assume
that treatment has no effect on the resistant strains. All infected
hosts leave the infected stage after some time, either through
recovery or death. The rates of ‘‘clearing’’ the infection by either
means are listed in Table 2.

There are several important differences that distinguish our
model from previous ones. Most previous models include a
conversion rate from wild-type infected to resistant infected
hosts. This assumes that once a host converts to a resistant one,
the infection ‘‘starts over’’. In contrast, we assume here that
resistance can emerge during treatment, and with probability ct

cause new infections that are dominated by the resistant strain.
We believe that this way of implementing resistance generation is
more realistic. Additionally, we allow resistance to arise and
spread with a small probability, cu, in untreated patients. Values
for ct and cu are chosen based on estimates we obtained in a
previous study (Handel et al., 2007b). Specifically, we chose the
value for ct as obtained from the immune response model with
treatment occurring one day after infection, while the value for cu

was chosen slightly lower than that obtained for the no treatment
case (see Handel et al., 2007b, Figure 4). Also note that in our
model, prophylaxis has no direct effect on the generation of
resistant infecteds. Instead, prophylaxis influences resistance
generation through the fact that failed prophylaxis places
infecteds into the treated class (which is more likely to give rise
to resistance than the untreated class).

Our model includes the evolution of the resistant strain. While
back-mutations to the fitter, susceptible strain are possible, it is
often more likely that instead of reversion to the original, drug
sensitive genotype, the resistant mutant undergoes further, so
called compensatory mutations (Levin et al., 2000; Maisnier-Patin
and Andersson, 2004; Handel et al., 2006). These mutations
reduce the fitness cost that comes with resistance, while at the
same time retaining the resistant mutation. The result can be a
strain that is at the same time resistant and has a fitness similar to
the initial, sensitive strain. Evolution of compensatory mutants
could occur along a single linear pathway or there could be
multiple routes with multiple possibilities for compensatory
mutations to increase fitness. For illustrative purposes, we choose
a simple, linear pathway with three levels of fitness for the
resistant strain. While the positive selection pressure experienced
by the fitter, compensated mutants could be less strong compared
to the selection pressure induced by drug treatment, there is no
data for estimates of the rate at which compensated mutants arise
and spread. As a conservative estimate, we assume that resistant
mutants with increased fitness are generated at the same rate as
the initial generation of resistance during treatment, i.e. we
choose c1 ¼ c2 ¼ ct .

Since the creation of resistance is a rare event, stochasticity is
important. Therefore, we use a stochastic model. The model is a
variation of a discrete time, Monte-Carlo simulation, often
referred to as the Gillespie (1977) algorithm. The Gillespie
algorithm produces exact trajectories of the stochastic process.
Since a straightforward implementation of the Gillespie algorithm
would be computationally too expensive for the population size
we consider, we instead use a recently introduced hybrid
stochastic solver known as partitioned leaping algorithm (Harris
and Clancy, 2006). The algorithm uses the exact Gillespie method
for low numbers and reaction rates, i.e. when stochasticity is
important, but switches automatically to computationally more
efficient methods using Poisson, Langevin and deterministic
approximations when appropriate (Harris and Clancy, 2006). This
leads to a significant reduction in execution time, while still
essentially retaining the ‘‘exactness’’ of the Gillespie algorithm.
The simulations are implemented in Fortran 90, the code is
available from the authors upon request.
3. Results

Antiviral control affects the drug sensitive strain by reducing
its fitness, defined in our setting as the average number of
secondary infections caused by an infected host, the reproductive
number (Diekmann et al., 1990; Anderson and May, 1991;
Hethcote, 2000). The reproductive number of the sensitive strain
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Fig. 2. Attack rate in the absence and presence of compensatory mutations.

Control starts after the indicated number of infections have occurred, with

treatment and prophylaxis chosen at equal levels, (f t ¼ f p). Control can only

mitigate the outbreak (Rf ¼ 1:2). Attack rate is defined as the total number of

infecteds divided by the population size. Boxplots are results from 2000 stochastic

simulations, lines show results from the equivalent deterministic model. The black

boxes and solid line are results in the absence of ongoing evolution through

compensatory mutations, the gray boxes and dashed line show results in the

presence of ongoing evolution. The dotted line shows the attack rate in the absence

of control. The resistant strains have R1 ¼ 1:5, R2 ¼ 1:75 and R3 ¼ 2:0, for the case

with compensatory mutations, c1 ¼ c2 ¼ ct .
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is given by the largest eigenvalue of the matrix M ¼ FV�1 (van den
Driessche and Watmough, 2002), where

F ¼
ð1� f pÞð1� f tÞbu ð1� f pÞð1� f tÞbt

ðf pð1� epÞ þ ð1� f pÞf tÞbu ðf pð1� epÞ þ ð1� f pÞf tÞbt

 !

and

V ¼
nu 0

0 nt

 !
.

From this one finds that the reproductive number in the presence
of control is

Rf ¼ ð1� f tÞð1� f pÞRu þ ðf t þ f pð1� ep � f tÞÞRt . (1)

Note that we ignored the negligible contributions of resistance
generation, i.e. we set ci � 0. The reproductive numbers for
untreated and treated hosts Ru and Rt , as well as the other
parameters are given in Table 2. If Rfo1, on average less than one
new host gets infected with the sensitive strain and therefore the
outbreak will die down. For Rf41, containment of the outbreak is
likely to fail. However, treatment or prophylaxis will still reduce
the number of hosts infected with the sensitive strain. Note that
the antiviral has no effect on the fitness of the resistant strains.

For any infectious disease outbreak, there will be a time lag
between the occurrence of the first infection, the recognition of
the outbreak as such, and implementation of control measures.
Since the probability that resistance is generated depends on the
number of infected hosts, rapid containment of the outbreak
will reduce the probability that a resistant mutant is gene-
rated and spreads. In the following sections, we study how
resistance emergence depends on the number of infecteds
before control starts. We consider this for different scenarios by
varying the evolutionary pathway of the resistant strain and
the type (prophylaxis versus treatment) and strength of the
antiviral control.

3.1. Compensatory mutations do not change the probability of

resistance emergence, but increase the number of infecteds in

large outbreaks

We start by considering how ongoing evolution of the resistant
strain can influence the probability of resistance generation and
the size of a pandemic outbreak. For the first scenario, we assume
that antiviral control is not strong enough to control the drug
sensitive strain, that is we have Rf41. The control effort leads to
only a mitigation in outbreak size. Since in this situation, a large
number of infections occur, resistance is always generated. In the
presence of compensatory mutations, the resistant strain can
evolve to higher fitness and therefore contribute to a larger
outbreak, increasing the attack rate by � 20% (Fig. 2). Including
ongoing evolution also increases the variance in the outbreak size,
which is expected since stochastic effects are most important
when a new resistant strain is created, which happens three times
for the scenario with ongoing evolution, versus only one time in
the absence of further evolution. Since the dynamics is nonlinear,
it is not expected that the mean of the stochastic simulations
agrees with the result found from the equivalent deterministic
model. However, as Fig. 2 shows, there is relatively good
agreement. If control starts early, almost all infections are caused
by the resistant strain(s). If control starts later, the sensitive strain
causes a significant outbreak before the resistant strains emerge
and cause their own outbreaks. These multiple smaller outbreaks
cause less infections compared to one large outbreak, leading to
the observed decline in overall attack rate for late control. This
phenomenon has been noted previously (Handel et al., 2006;
Lipsitch et al., 2007) and we will return to it in a later section.
In the next scenario, we assume that the control effort is strong
enough to lead to Rfo1, i.e. the outbreak caused by the sensitive
strain can be contained. If containment occurs before the resistant
strain has emerged, no major epidemic occurs. If, on the other
hand, the resistant strain is generated and starts to spread,
antiviral control efforts become ineffective and a large epidemic
caused by the resistant strain occurs. We find that including
evolution of the resistant strain barely changes the probability of
resistance emergence Fig. 3. However, as was the case in the
mitigation scenario above, the increase in fitness of the resistant
strain due to compensatory mutations leads to an increase in
attack rate by as much as � 20%.

3.2. Evolution through compensatory mutations can be mapped onto

a one-step process

While continued evolution of a resistant strain is without
doubt going to occur, the details of the evolutionary process
cannot be predicted. Above, we assumed that fitness increases in
equal steps, from R1 ¼ 1:5 over R2 ¼ 1:75 to R3 ¼ 2:0, the original
fitness of the sensitive strain. We further assumed that the
probability of these events happening was the same as the
probability of emergence during treatment, i.e. ct ¼ c1 ¼ c2.
However, other scenarios are equally likely. The increase in fitness
could for instance occur in unequal steps or the probabilities for
these events could differ. While it is impossible to explore all
these scenarios (see Handel et al., 2006 for some more details), it
is worth investigating if and how the evolutionary trajectory can
be mapped onto a simple process where a resistant strain emerges
and does not undergo further compensatory mutations. Two
mappings might be expected to be possible. First, a 3-step
trajectory with fitness levels R1 ¼ 1:5, R2 ¼ 1:75 and R3 ¼ 2:0
could be equivalent to a single step to a resistant strain with some
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the curves). Right: Solid lines show attack rate averaged over all 2000 stochastic simulations, dashed lines show attack rate averaged only over those simulations where a
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different fitness R0. Alternatively, the three probabilities ct , c1 and
c2, might be mapped into a single probability c0, directly leading to
the final strain. As Fig. 4 shows, while it is indeed possible to find a
1-step process with resistant fitness R0 that produces a result
similar to that of the 3-step process, it is not possible to map the
jump probabilities into a single one. The reason for this latter
finding is that the main ‘‘bottleneck’’ in the process is caused by
the initial generation of resistance. Once the resistant strain has
been generated, it starts to spread and quickly reaches levels at
which the generation of fitter strains is almost certain. Therefore,
the initial rate of resistance generation is crucial in determining
the probability of resistance emergence, and therefore the average
attack rate. Changing this rate to a different value, c0, does not lead
to dynamics that resembles a process with three transition rates.
3.3. Early control based on strong prophylaxis is the best control

strategy to prevent resistance emergence

While treatment with neuraminidase inhibitors will be
important to reduce morbidity and mortality of individuals,
epidemiological control can be achieved with treatment or
prophylaxis. While resistance is more likely to emerge during
treatment, the fact that prophylaxed individuals are only
susceptible to the resistant strain leads to strong selective
pressure for resistance (Lipsitch et al., 2007). Nevertheless,
we find that if control is strong enough to contain the
outbreak caused by the sensitive strain, prophylaxis fares
better in preventing resistance emergence and therefore
reducing the attack rate Fig. 5. Stronger control measures
(i.e. a further reduction in Rf ) contain the sensitive outbreak
faster, thereby further reducing the probability that resistance
emerges. This leads to a shift of the curves in Fig. 5 towards
the right (not shown). Equivalently, resistance emergence
becomes more likely and the curves shift to the left if control
is less strong and containment takes longer. Note that
again, the distribution underlying the average for the attack
rate is bimodal, consisting of a fraction of simulations for
which no resistant outbreak occurred, and another fraction
(given by the probability of resistance emergence) for
which resistant outbreaks occur. Changing the level of control
does not change the size of a resistant outbreak once it occurs,
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it only changes the probability of such a resistant outbreak
to occur.

3.4. Optimal mitigation occurs at intermediate control strength

If control cannot contain the outbreak, but instead can only
mitigate its strength, resistance is very likely to be generated.
However, if control does not bring the fitness of the sensitive
strain below that of the initially generated resistant mutant, the
sensitive strain will dominate. The resistant strain will cause few
infections, not enough to have a significant chance of generating
further mutants with fitness levels above that of the sensitive
strain. The pandemic is almost certain to end before resistance can
emerge (i.e. account for more than 5% percent of infecteds) and
virtually all infections are caused by the sensitive strain (Fig. 6,
Rf ¼ 1:5). Increasing control measures to a level where RfoR1

leads to a decrease of sensitive infecteds, but now resistance will
emerge and contribute to the attack rate (Fig. 6, Rf ¼ 1:35). Once
control measures are strong enough to sufficiently suppress the
sensitive strain, the resistant strain will dominate and lead to a
large resistant outbreak, which in turn leads to an overall increase
in infecteds (Fig. 6, Rf ¼ 1:2). Therefore, if it is not possible to
contain the outbreak, an intermediate level of control is optimal.
We will discuss this point in more detail in the next section. In
contrast to the containment scenario (Rfo1), for the mitigation
scenario (Rf41) the type of control (prophylaxis or treatment) has
almost no impact on the overall attack rate (not shown).
3.5. Optimal treatment strategies differ between stochastic and

deterministic models

Above results suggest, and previous studies have shown, that if
there are two outbreaks, one caused by the drug sensitive strain
and one by a drug resistant strain, an intermediate level of
antiviral control can lead to a minimum in the total number of
infecteds (Lipsitch et al., 2007; Moghadas et al., 2008). This can be
explained by one of our previous studies, where we showed that
the minimization of an ‘‘overshoot’’—defined as the excess
infections that occur during the waning phase of an outbreak—

will lead to an optimal control strategy for multiple outbreaks,
such as a drug sensitive outbreak followed by a drug resistant one
(Handel et al., 2007a). Essentially, two small outbreaks, sensitive
and resistant, lead to less overshoot and therefore a smaller
overall number in infecteds compared to one large outbreak
(Handel et al., 2007a; Lipsitch et al., 2007). These studies are
based on a deterministic modeling framework, for which
resistance is always generated. We decided to see if these
proposed strategies are still optimal when stochasticity is taken
into account.

Fig. 7 shows that for Rf41 (area left of the dotted vertical line
in Fig. 7), there is indeed an intermediate level of control which
minimizes the attack rate, in agreement with the results obtained
for the mitigation scenario above. However, if control can be
implemented such that Rfo1, Fig. 7 suggests that more control is
better, since it can reduce the probability of resistance generation
(area right of the dotted vertical line in Fig. 7). This is in contrast
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to results obtained using a deterministic framework (Moghadas
et al., 2008), for which resistance is always generated and causes a
second outbreak. In such a deterministic scenario, high levels of
antiviral use lead to rapid generation of resistance and an
increased overall attack rate, with an intermediate control level
producing the lowest attack rate. The stochastic framework
suggests that rapid and strong control that might lead to quick
containment of the outbreak is best.

It was also shown that for a deterministic model, a strategy of
initial low control, followed by a sudden increase in control
strength once enough sensitive infecteds are depleted, could
perform better compared to a strategy that is based on a constant
level of treatment (Moghadas et al., 2008). However, little initial
control is more likely to lead to generation of a secondary
resistant outbreak, while rapid and strong control might contain
not only the sensitive outbreak, but also prevent resistance
generation.Fig. 7 confirms this. We plot attack rate for a situation
where treatment starts at f ¼ 0:1 and increases to f ¼ 0:9 at the
indicated time. The figure shows that a scenario at which the
switch to stronger control occurs at around 90 days leads to a local
minimum in the attack rate, again due to minimization of the
overshoot (Handel et al., 2007a). However, rapid switch to strong
control leads to the largest reduction in attack rate. This suggests
that using a ‘‘start low, then increase’’ control strategy as
suggested in Moghadas et al. (2008) might be suitable if a
secondary resistant outbreak is unavoidable. However, if control
can reduce the number of infecteds enough to prevent generation
and spread of resistance, then one should implement strong
control measures at high levels as soon as possible.
3.6. Details of modeling resistance emergence lead to small

differences in results

Our study implements the process of resistance generation in a
way that differs from previous studies. Most previous models
assume that a fraction of treated hosts exit the class of sensitive
infecteds and enter the class of resistant infecteds, thereby
essentially ‘‘starting over’’. In contrast, we assume that resistance
can emerge during treatment (and at much lower levels in the
absence of treatment), and with a certain probability cause new
infections that are dominated by the resistant strain. We believe
that our implementation of resistance generation is more realistic.
To see if the different implementations of the resistance generation
process are important, we compared our model to previous ones.
Specifically, we assumed—as done in previous models—that as
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infected hosts leave their compartment, a small fraction, c0i, enter a
new resistant infected compartment (i.e. treated and untreated
hosts enter the resistant compartment I1, the first resistant strain
enters compartment I2, etc.). It is not clear what the rates for c0i
should be; especially since we would argue that modeling
resistance generation in this way does not correspond directly to
a biologically realistic mechanism. To allow some comparison, we
assume here that the fractions c0i are equal to the ci. Fig. 8 shows
that using the two different ways of implementing resistance
generation leads to small differences but overall close agreement.
We find the same for other types and levels of control (not shown).
4. Discussion

Several conclusions can be drawn from our study. First, we find
that the ongoing evolution of the resistant strain can contribute
significantly to an increase in outbreak size. The fitness of the
resistant mutants is not known. If the initially generated resistant
mutant spreads poorly (i.e. R1oRf ), it could take very long before
compensatory mutations are created that improve the fitness to a
level where the strain can spread widely (Antia et al., 2003; Handel
et al., 2006). While there was initial hope that strains resistant to
the neuraminidase inhibitors have strongly reduced fitness, recent
data suggest that at least some resistant mutants spread almost as
well as the wild-type (Herlocher et al., 2004; Yen et al., 2005; Sheu
et al., 2008). Therefore, assuming that resistant strains with fitness
value similar to the ones we choose here will emerge is
(unfortunately) reasonable. For the (assumed but plausible)
scenario where the rates of compensatory mutation are as high
as those of resistance generation during treatment and the fully
compensated resistant strain has a fitness the same as the drug
sensitive strain, we find that the number of infecteds can increase
by as much as 20% owing to the evolution of the resistant strain.

Second, our results show that if it is possible to quickly contain
an outbreak caused by a drug sensitive strain, it might also be
possible to prevent resistance generation and an outbreak by the
resistant strain. For that to occur, it is crucial to start control early
and at high levels. Additionally, our results suggest that
prophylaxis is the better control strategy to prevent resistance
emergence. However, prophylaxis of a fraction of the total
population will likely require many more doses of antivirals and
is more problematic logistically, compared with treatment of
infecteds. This could be prevented by using targeted prophylaxis
(Longini et al., 2004). In any case, additional factors will likely
influence the question of treatment versus prophylaxis. If a
pandemic strain with a high level of virulence were to spread,
treatment might be crucial to reduce mortality and could take
precedence over prophylaxis.

Third, we find—in agreement with earlier studies (Lipsitch
et al., 2007; Moghadas et al., 2008)—that if containment is not
possible and outbreak mitigation is the best possible outcome,
intermediate levels of control minimize the number of infecteds,
owing to a reduction in overshoot caused by two smaller outbreaks
(a sensitive and a resistant one) compared to one large outbreak
(either a sensitive or a resistant one) (Handel et al., 2007a).

Fourth, we find that details in which resistance generation is
implemented in the model do not significantly affect the results.
This is reassuring, as it suggest some robustness of the results
obtained by different models.

The inclusion of stochasticity and the consideration of
evolution of the resistant virus gives a somewhat more realistic
model compared to most previous ones that were used to study
generation and spread of neuraminidase inhibitor resistance in
influenza. Nevertheless, we still made a number of simplifying
assumptions. Our model assumes a homogeneous population.
Based on results by others, we expect that heterogeneity will
likely change the detailed dynamics of the outbreak, but the
overall qualitative results will probably not change (Lipsitch et al.,
2007). We also assume that every infected case is symptomatic. If
asymptomatic cases do not spread the virus, then including those
into our model simply reduces the reproductive numbers and
therefore makes a given level of control more effective. If,
however, asymptomatic cases spread, and at the same time are
not detected (i.e. do not receive treatment), it could undermine
treatment-based control strategies. This would argue further for
the importance of prophylaxis as the better control strategy from
an epidemiological standpoint. Implicit in our model formulation
is the assumption that infectious periods are exponentially
distributed. It has been shown that the assumption that infectious
periods are exponentially distributed can lead to different results
in for instance parameter estimation and dynamical details,
compared to models that assume gamma-distributed infection
periods (Wearing et al., 2005; Lloyd, 2001). One way our results
could be affected is that an exponential distribution leads to a few
hosts with unrealistically long infection times. These hosts could
potentially impact the probability that resistance is generated,
especially in the multi-step process including compensatory
mutations. Based on our experience using models with both
exponential and gamma-distributed infection times, we believe
that a gamma-distributed model would not affect the qualitative
results. However, we have not formally tested this for the
scenarios studied here, and it might merit further investigation.

If an outbreak were to occur, treatment or prophylaxis will not
be random and uniform as we implemented it in our simple
model, but instead public health authorities will likely use a
combination of targeted antiviral prophylaxis, contact tracing,
preferential treatment of certain groups, etc. Therefore, to carefully
assess intervention methods that take into account drug avail-
ability, as well as details in drug delivery, e.g. at what day post-
infection people start taking the drug, for how long they continue
to do so, and how that affects transmission, requires more detailed,
agent-based models (Longini et al., 2005; Ferguson et al., 2005;
Ferguson et al., 2006; Germann et al., 2006; Halloran et al., 2008).
Such models that include resistance into agent-based models are
in development (Neil Ferguson, personal communication).

To summarize, our results suggest that if we are able to detect
an outbreak early and intervene quickly, it might be possible to
not only control a sensitive outbreak, but also to prevent the
emergence and spread of resistance. If on the other hand
intervention is not quick enough, or control measures are not
able to stop the outbreak, then the emergence of resistance is very
likely. Therefore, while antivirals will certainly be an important
component of pandemic control, we should not rely on them too
much. Instead, a comprehensive approach based on good
surveillance and rapid response with first-line control mechan-
isms such as antivirals and behavior changes such as social
distancing measures, as well as a concerned effort to rapidly
produce a potent vaccine, will be the best answer to an influenza
pandemic (Halloran et al., 2008). In fact, such a multi-pronged
approach seems the most promising approach against most
future, novel emerging pathogens.
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